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Abstract
We conjecture that criterion for perfect quantum teleportation is that the Groverian entangle-
ment of the entanglement resource is 1/4/2. In order to examine the validity of our conjecture
we analyze the quantum teleportation and superdense coding with |®) = (1/4/2)(|00g1) + |11¢3)),
where |g1) and |g2) are arbitrary normalized single qubit states. It is shown explicitly that |®)
allows perfect two-party quantum teleportation and superdense coding scenario. Next we com-

pute the Groverian measures for ) = /1/2 — b2|100) + b/010) + a|001) + 1/1/2 — a?|111) and
|9b) = a|000) 4b|010) +1/1/2 — (aZ + b2)|100) + (1/+/2)|111), which also allow the perfect quantum

teleportation. It is shown that both states have 1/ V2 Groverian entanglement measure, which

strongly supports that our conjecture is valid.
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Quantum teleportation[1] is a physical process, where an unknown state can be trans-
mitted from one remote place to another by making use of the entanglement resource and
classical communication. About one and half decades ago Bennett et al[1] have found such
process. They used the two-qubit Einstein-Podolsky-Rosen (EPR) state as an entanglement
resource, which is assumed to be initially shared between the sender, called Alice and the
receiver, called Bob. Quantum teleportation is generalized to the case where the noisy chan-
nels make a quantum channel to be mixed state[2]. In this case the quantum teleportation
generally becomes imperfect due to the effect of the noisy channels. If we do not have EPR
state or its local-unitary(LU) equivalents, then Alice cannot teleport a single qubit to Bob
with unit fidelity and unit probability. Increasing the fidelity as much as possible, one can
achieve an unit fidelity with a probability less than a unit, which is called probabilistic
quantum teleportation|[3, 4].

The higher-qubit entangled states also can be used as an entanglement resource of the
quantum teleportation. In n-qubit system with n > 3 there seems to be no unique way to
define the maximally entangled states. For n = 3, for example, it is well-known that there

are two types of entangled states called Greenberger-Horne-Zeilinger(GHZ) state[5]

1
(GHZ) = = (1000) + [111) (1)
and W state|[6]
W) = - (J001) + [010) + [100)). @)

V3

These two types are not connected to each other via stochastic local operations and classical
communication(SLOCC)[6]. It was also found that four qubits can be entangled in nine
different ways|[7].

We generally use the entanglement measures to quantify the entanglement of multi-qubit
state [1)). Ome of the well-known measure constructed by an operational method! is a

Groverian measure[8| defined G(¢)) = /1 — P4z, Where

Pmaw:| max ‘<61|®®<6n‘¢>|2 (3)

el)""en)

! In operational method the entanglement measures are constructed by making use of the real physical
tasks such as quantum algorithms. In fact, the Groverian entanglement measure was constructed from
Grover’s search algorithm.



Physically, P, corresponds to the maximal probability of success in Grover’s search
algorithm[9] when |¢) is n-qubit initial state. Eq.(3) can be re-written in terms of den-
sity matrix p = [¢)(¢| in the form

Pz = Tr[pR'®---® R" 4
Rl}r}%(n r[p Q& ] (4)

where R' = |q;)(gi]-
The quantum teleportation with 3-qubit GHZ state was discussed in Ref.[10]. When one

sender (Alice) would like to send one-qubit state

)1 = l0) + B[1) (lal* + 18" =1) (5)

to one receiver (Bob), the perfect quantum teleportation with |GH Z),34 can be easily shown
as following. First, we assume that Alice has particles 2 and 3, and Bob has particle 4. Next,

we note that [1)); ® |GHZ)g34 reduces to
00 68 2) = |\l 160m © 1+ /P lon)me 2 (6)
+\/ P2+|¢;>123 X + Y Py |5 )123 ® ZX:| (a[0)s + B|1)4)

where P, = P = P}t = Py =1/4, (X, Y, Z) Pauli matrices, and

L1
) = <5 (000) & 1)) (7)
6%) = —— (1100) = [011)).

V2
Since |¢F) and |¢5) are orthogonal to each others, Alice can distinguish them via von
Neumann type measurement. Of course, the postulates of quantum mechanics tells that the
probabilities for outcomes are P;* and Py, respectively. After Alice conveys her measurement
results to Bob via classical channel, Bob can construct |1/~)> by applying an appropriate
unitary transformation to his own qubit. This is a whole story of quantum teleportation
between two parties.

Since the quantum teleportation between two parties can be done perfectly with the two-
qubit EPR channel, actually the above-mentioned teleportation is not new scheme. However,
the three-qubit GHZ state can be used to three-party (Alice, Bob, Cliff) teleportation.
Although the well-known no-cloning theorem[11, 12] does not allow for Alice to teleport |1))
to both Bob and CIliff, one can use the 3-qubit GHZ state as a quantum copier (cloning
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device)[13-15] with fidelity less than one[10]. The quantum teleportation with four qubit
GHZ state and its role as a cloning machine was discussed in Ref.[16].

Recently, furthermore, the slightly-modified W state
1
\Wi)ogs = 3 (|100>234 + [010)234 + \/§|001)234) (8)

is used for perfect two-party quantum teleportation[17]. This can be shown as following.
First let us assume that Alice has particles 2 and 3, and Bob has particle 4. Then after

some calculation it is easy to show

D)1 ® [Wi)ass = \/%[Wf)m QL+ [ )123® 7 9)
HE D © X + 167 © 2] (al0)s + A1)
where

) = % (|010> +1]001) + \/§|100)) (10)

€2) = % (\110) +]101) + \/5\000)) .

Since |ni") and |&) are orthogonal to each others, the usual quantum teleportation process
allows Bob to have [¢) via an appropriate unitary transformation. The difference of this
process from teleportation with |GHZ) is that in this case Alice should initially choose
particles 2 and 3 for perfect teleportation. If Alice has different particles, one can show that
the perfect teleportation is impossible with state |W;). Since, however, initially Alice and
Bob can choose particles freely, we can use |W;) for perfect two-party quantum teleportation.

The perfect teleportation with |[W;) and |GHZ) naturally arises a question: what is a
criterion for the perfect two-party quantum teleportation? In other words what common
property of |W;) and |GH Z) allows perfect teleportation? As will be shown below, |[W;) and
|GH Z) have same P,,,, = 1/2. Thus this fact might be criterion for the perfect teleportation.
The purpose of this paper is to explore this issue in detail.

Recently, it was shown[18] that P,,,, for n-qubit state can be computed if one knows one
of the (n — 1)-qubit reduced states using a formula

Pros = Tr[pR'® ---® R"| = Tr[pR'® ---®@ R" '@1]. 11
‘max r[pR'® - ® R"] LANax r[pR'® - ® ® 1] (11)



Eq.(11) leads several important conclusions[18]. Furthermore, Eq.(11) provides a good tool
for the analytic calculation of Pp,u;. In Ref.[19] P4, for various 3-qubit states was analyti-

cally computed using Eq.(11). For the generalized W state, for example,
|GW) = al001) + b/010) + ¢|100) (@®+b*+c*=1) (12)
P, can be expressed as following:

max(a?, b?, %) = o? when o? > 32 ++2
Pz = (13)
4R? when o? < 3?2 + 2
where o = max(a?, b?, ¢?) and, 5% and 7? are the remaining ones. In Eq.(13) R is a circum-
radius of the triangle a, b, c. From Eq.(13) it is easy to show that if a, b, ¢ form an equilateral
triangle, Ppq; = 4/9, which is consistent with the results of Ref.[20]. Furthermore, Eq.(13)
implies that if the parameters a, b, ¢ form a right triangle, we call the corresponding |GW)
‘singular states’? and their P,,,, becomes 1/2. Since |W;) in Eq.(8) is one of singular states,
its Py is 1/2 as we commented before. Since it is well-known that the n-qubit GHZ states
has Ppa: = 1/2 regardless of n[20], this remarkable fact makes us conjecture that P, = 1/2
is a necessary (or sufficient) condition for the perfect two-party teleportation.
To examine the validity of our conjecture we choose the state
1
V2

where |¢;) and |¢e) are arbitrary normalized one-qubit states. If |¢;) = |0) and |¢g2) = [1), |D),

|[®)231 = —=(/001) + [11¢2)) (14)

of course, becomes usual GHZ state. As shown in Ref.[19], Py, of |®) is also 1/2 regardless
of |¢1) and |ge). Thus this state is appropriate to check the validity of our conjecture. We
will show that like GHZ and W states |®) also allows the perfect quantum teleportation and

superdense coding scenario. Next, we will compute P,,,, of more general three-qubit states,

2 The suitability of the terminology ‘singular states’ can be seen easily if one changes Eq.(12) into the
one-parameter dependent states by letting b = ka and ¢ = k2a. Then Eq.(13) allows oneself to derive the
analytic expressions for the k-dependence of P,,,,. Using these expressions, one can show that P,,,, at
right triangle a, b, ¢ is continuous but its derivative d P, /dk is discontinuous. For general state (12) the
normalization condition a2 + b2+ ¢? = 1 defines a sphere and the condition for right triangle a? = 32 +~?2
defines a cone. The intersection of the cone with the sphere is generally a circle on the sphere. Inside the
circle Ppor < 1/2 and outside Ppq, > 1/2. On the circle P, = 1/2 but its gradient is discontinuous.
Thus it is reasonable to use the terminology ‘singular states’ for the states with a? = 32 + 2.



which also allow the perfect teleportation. As we conjecture, it is shown that these general
states also have Py, = 1/2.

In order to discuss the two-party quantum teleportation with |®) we assume first that
Alice has particles 3 and 4, and Bob has particle 2. In this situation it is convenient to
define

1
V2
) = = [1106) % 012)].

%) = —=[/00g1) + |11¢y)] (15)

Then one can show that |F) and [15) are orthogonal to each others regardless of |¢;) and

|g2). After some calculation one can show straightforwardly that |0} ® |®)ass reduces to

)1 ® |®)o34 = \/%[WDBAL @1+ [ )13a ® Z (16)
+| Y3 V134 ® X + [0y )134 @ ZX | (| 0)2 + B[1)2).

Thus Alice can send |1ﬂ) to Bob via usual quantum teleportation process: she distinguishes
) and |13) via von Neumann type measurement and conveys her measurement outcomes
to Bob via classical channel. If Bob has particle 3 and Alice has particles 2 and 4, one can
show similarly that a perfect quantum teleportation with |®) is also possible.

Finally, let us consider the situation that Bob has particle 4 and Alice has particles 2 and
3. Even in this case one can show that perfect quantum teleportation is possible if |g;) is
orthogonal to |g2), i.e. {g1]|q2) = 0. If (q1|g2) = 0, there should exist an unitary operator u
such that |¢;) = u|0) and |go) = u|1) because unitary operator preserves the inner product.

Then |®) is obtained from |GH Z) via local-unitary transformation as following
®)=(1®1Qu)|GHZ). (17)
Then Eq.(6) implies
[0)1 ® [®)254 = \/Z[WIL)H?’ ® ull + |¢] )123 ® uZ (18)
+103 V123 @ uX + |d3 Y123 @ uZX | (|0)s + B|1)4) -

Therefore, if Alice has outcome |¢7) via her measurement, Bob can get [¢)) by operating
u™! = u' to his qubit. If she has |¢] )123, |¢3 )123 and |¢; )13 respectively, Bob should oper-
ate Zu~!, Xu™! and X Zu~! for each case to get |@Z) Thus perfect quantum teleportation
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is possible. Although perfect two-party quantum teleportation is impossible provided that
Bob has initially particle 4 and (q;|g2) # 0, we can use |®) for perfect teleportation be-
cause initially Alice and Bob can choose their particles freely. This is exactly same situation
with teleportation with |[W;). In conclusion we can use |®) for the perfect two-party quan-
tum teleportation. This strongly supports our conjecture that the criterion for the perfect
quantum teleportation is Ppa, = 1/2.

Next we would like to discuss the superdense coding[21] with |®). In order for the
superdense coding scenario to work Alice should be able to send two classical bits to Bob
by sending one qubit. Now we assume that Alice has particle 2 and Bob has particles 3 and
4 in |®)934. If Alice applies (1, Z, X, —iY) to her qubit, |®) changes into

(1e1®1)|2) =) (19)

(Zo1e1)[®) = [¢r)

(Xe1®1)[®) = |¢;)

(—iY @18 1)|®) = [v57)
respectively. Since [1/f) and |¢)5) are orthogonal to each other, Bob can distinguish them
via von Neumann type measurement if Alice send her one qubit to him. This completes
the superdense coding scenario with |®). Similarly, one can show that we can complete the
superdense coding scenario if Alice has particle 3 and Bob has particles 2 and 4. Although
perfect superdense coding scenario is impossible provided that Alice has particle 4 and
(g1|q2) # 0, we can use |®) for prefect superdense coding because initially Alice and Bob
can share particles freely at their convenience.

Recently, two three-qubit states were found, which allow the perfect quantum
teleportation[22]. We would like to show that both states also have P, = 1/2 as we

conjecture. This strongly supports the validity of our conjecture again. First state is

1 1 1
— _ _ h2 a2 . < <
[y = 5 b2|100) + b/010) + a|001) + 3 a?|111) (0 a,b \/5) (20)

If a = 1/v/2 and b = 1/2, |¢) reduces to |W;) defined in Eq.(8). Let {a,3,7,d} be set
of {a,b,1/1/2 — a2, \/1/2 — b2} with decreasing order. Then one can show easily o? <
B2+ %+ 62 + 2876 /o regardless of a and b. As shown in Ref.[23], then, P, for |¢) equals

to 4R?, where R is a circumradius of convex quadrangle:

a0y + azay)(ara3 + agaq)(araq + asas)

RQZ(
4w? — 12

(21)
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where w = ajas + azaq, r3 = a? + a3 — a3 — a3, and the constants a;’s are the coefficients of

the quantum channel (20). If we put a; = /1/2 —b%, as = b, a3 = a and a4 = /1/2 — a?,
one can show easily that P, for [¢) in Eq.(20) is 1/2.

Second state which allows a perfect quantum teleportation is

19) = al000) + bJ010) + 4/ 5 — (a2 + 12)]100) + \%nu). ((0 <@ < %) (22)

If a = 1/+/2 and b = 0, |4} exactly coincides with GHZ state. As shown in Ref.[18, 19],

P4, for \1&) can be written as

1 — — - —
Pmaw = _max — [1 + So 7T+ S3-T3+ 821'83]'91']'] (23)
55|=|55/=1 4

where

7y = Tr[p? 5] = (2ab, 0, —2b%) (24)
7y = Tr[p“5] = (0,0,0)

1 —2(a% +b?) 0 2ab
gi; = Tr[pP0; @ 0] = 0 —/1=2(@+b) 0
0 0 1 — 202

In Eq.(24) pBC, pP and p€ are the corresponding partial traces of pABC¢ = [¢)(¢)| and ;s
are usual Pauli matrix. Due to maximization in Eq.(23), 5, and §3 satisfy the Lagrange

multiplier equations

Ty + 953 = A5 (25)

— T — —
T3+ g 55 = Ny53

with Ay, Ay > 0. Let 55 = (o4, S2y, S2,) and 53 = (Saz, Say, S3,). Then Lagrange multiplier
equations in general reduce to six-degree algebraic equations and it is usually impossible to
derive the solutions analytically. For |¢)), however, Eq.(25) reduce to simple cubic equations
due to dramatic cancellation between left and right sides. Due to this cancellation we can

derive analytic solutions which are sy, = s3, = 0 and

(a% = b?) + 262(a® + B?) 1 — 2(a? + b?)

BT T ) (- 20 o b\/ (@ —2)(1— 25 (26)




The first solution of Eq.(26) yields the remaining solutions

o 2aby/1 — 2(a? + b?) . = 2ab o a? —v? (27)
T (a2 4 02) (1 — 202) T 24 T a4 b2

and positive Lagrange multiplier constants A; = 1 and Ay = 1 — 2b?>. Then Eq.(23) gives
Ppaz = 1/2. The second solution of Eq.(26) also yields the different remaining solutions,
but the corresponding Pq; is (1/4)(1 + /1 — 2a2), which is smaller than 1/2. Since we
should take maximization in Eq.(23), Ppaz for 1) should be 1/2.

We have shown that |®), whose P, is 1/2, allows the perfect two-party quantum tele-
portation. Also we have shown that |1) and |¢) in Eq.(20) and Eq.(22) have P, = 1/2.
The usual GHZ and W states are special limits of [¢)) and [¢). This means that our conjec-
ture “the criterion for the perfect two-party quantum teleportation is Ppay = 1/2” is widely
applicable. Since we cannot find any counter-example, we feel that this criterion is a neces-
sary and sufficient condition. In other words “the perfect two-party quantum teleportation is
possible if and only if the Groverian measure for the entanglement resource is 1/v/2”. But
more rigorous proof is needed for this statement.

If our conjecture is right, it can be used to find the quantum states which allow the perfect
teleportation. For example, let us consider the four-qubit states. Unfortunately, we do not
know how to compute the Groverian measure of the general four-qubit states analytically
until now except very rare cases. Since, however, the techniques for the analytic computation
of P,., are developed rapidly, we believe that we have many formula about Groverian
measures for the four-qubit states in the near future. Then our conjecture can be applied
to find the optimal states for the perfect teleportation or quantum copier (cloning device).
In addition, at least, we know how to compute the Gorverian measure numerically[20]. The

numerical calculation gives 0.499 < P, < 0.5 for
|1y = a|1000) + 5[0100) + ¢|0010) + d|0001) (28)

when o? = 2 + 9? + §? where {«, 3,7,6} is {a,b,c,d} with decreasing order. Thus if
our conjecture is correct, [¢) is Eq.(28) may allow the perfect or imperfect (with very
high fidelity) teleportation. Thus the rigorous proof for our conjecture is important in this
context. We hope to keep on studying toward the application of our conjecture and its

complete proof.



Acknowledgement: This work was supported by the Kyungnam University Research

Fund, 2007.

references

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting
an Unknown Quantum State via Dual Classical and Finstein- Podolsky-Rosen Channles, Phys.
Rev. Lett. 70 (1993) 1895.

[2] S. Oh, S. Lee and H. Lee, Fidelity of quantum teleportation through noisy channels, Phys.
Rev. A66 (2002) 022316 [quant-ph/0206173].

[3] P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A305 (2002) 12
[quant-ph/0210004].

[4] G. Gordon and G. Rigolin, Generalized teleportation protocol, Phys. Rev. A73 (2006) 042309
[quant-ph/0511077].

[5] D. M. Greenberger, M. Horne, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and Con-
ceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989) p 69.

[6] W. Diir, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways,
Phys. Rev. A62 (2000) 062314 [quant-ph/0005115].

[7] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Four qubits can be entanngled in
nine different ways, Phys. Rev. A65 (2002) 052112 [quant-ph/0109033].

[8] O. Biham, M. A. Nielsen and T. J. Osborne, Entanglement monotone derived from Grover’s
algorithm, Phys. Rev. A65 (2002) 062312 [quant-ph/0112097].

[9] L. K. Grover, Quantum Mechanics helps in searching for a needle in a haystack, Phys. Rev.
Lett. 79 (1997) 325 [quant-ph/9706033].

[10] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement,
Phys. Rev. A58 (1998) 4394.

[11] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, 299 (1982)
802.

[12] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Noncommuting mized
states cannot be broadcast, Phys. Rev. Lett. 76 (1996) 2818 [quant-ph/9511010].

10



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

V. Buzek, V. Vedral, M. B. Plenio, P. L. Knight, and M. Hillery, Broadcasting of entanglement
via local copying, Phys. Rev. A55 (1997) 3327 [quant-ph/9701028].

N. Gisin and S. Massar, Optimal Quantum Cloning Machines, Phys. Rev. Lett. 79 (1997)
2153 [quant-ph/9705046).

V. Buzek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A54
(1996) 1844 [quant-ph/9607018].

A. K. Pati, Assisted cloning and orthogonal complementing of an unknown state, Phys. Rev.
A61 (2000) 022308 [quant-ph/9904068].

P. Agrawal and A. Pati, Perfect teleportation and superdense coding with W states, Phys. Rev.
A'74 (2006) 062320 [quant-ph/0610001].

E. Jung, Mi-Ra Hwang, H. Kim, M. -S. Kim, D. K. Park, J. -W. Son and S. Tamaryan,
Groverian Measure in Multi-Qubit Systems, arXiv:0709.4292 [quant-ph].

L. Tamaryan, D. K. Park, and S. Tamaryan, Analytic Expression for Geometric Measure of
Three Qubit States, Phys. A 77 (2008) 022325 arXiv:0710.0571 [quant-ph].

Y. Shimoni, D. Shapira and O. Biham, Characterization of pure qyantum states of multiple
qubits using the Groverian entanglement measure, Phys. Rev. A69 (2004) 062302 [quant-
ph/0309062].

C. H. Bennett and S. J. Wiesner, Communication vi one- and two-particle operators on
Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.

Xin-Wei Zha and Hai-Yang Song, Three-qubit pure-state canonical forms for Perfect Telepor-
tation, arXiv:0706.3326 [quant-ph].

L. Tamaryan, D. K. Park, J. W. Son and S. Tamaryan, Geometric Measure of Entanglement
and Shared Quantum States, arXiv:0803.1040 [quant-ph].

11



